22 resultados para P2 receptors

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ontogeny of muscarinic receptors was studied in human fetal striatum, brainstem, and cerebellum to investigate general principles of synaptogenesis as well as the physiological balance between various chemical synapses during development in a given region of the brain. [3H]Quinuclidinyl benzilate ([-'H]QNB) binding was assayed in total particulate fraction (TPF) from various parts of brain. In the corpus striatum, QNB binding sites are present at 16 weeks of gestation (average concentration 180 fmol/mg protein of TPF), slowly increase up to 24 weeks (average concentration 217 fmol/mg protein), and rapidly increase during the third trimester to 480 fmol/mg protein of TPF. In contrast, dopaminergic receptors exist as two subpopulations. one with low affinity and the other with high affinity up to the 24th week of gestation; all of them acquire the highaffinity characteristic during the third trimester. In brainstem, the muscarinic receptors show maximum concentration by 16 weeks of age (360 fmolimg protein of TPF). Subsequently the muscarinic receptor concentration shows a gradual decline in the brainstem. In cerebellum, except for a slight increase at 24 weeks (average concentration 90 fmol/mg protein of TPF), the receptor concentration remained nearly constant at about 60-70 fmolimg protein of TPF throughout fetal life. This study demonstrates that the ontogeny of muscarinic receptors varies among the different regions, and the patterns observed suggest that receptor formation occurs principally in the third trimester. Also noteworthy is the finding that the QNB binding sites decreased in all regions of the human brain during adult life. Key Words: Cholinergic muscarinic receptors-Quinuclidinyl benzilate-Corpus striaturn-Brainstem-Cerebellum. Ravikumar B. V. and Sastry P. S. Cholinergic muscarinic receptors in human fetal brain: Ontogeny of [3H]quinuclidinyl benzilate binding sites in corpus striatum, brainstem, and cerebellum. J. Neurochem. 45, 1948- 1950 (1985).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induction of follicle stimulating hormone receptor in the granulosa cells of intact immature rat ovary by diethylstilbesterol, an estrogen, has been studied. A single injection of 4 mg of diethylstilbesterol produced 72 h later a 3-fold increase in follicle stimulating hormone receptor concentration as monitored by [125I]-oFSH binding to isolated cells. The newly induced receptors were kinetically indistinguishable from the preexisting ones, as determined by Lineweaver-Burk plot of the binding data. The induced receptors were functional as evidenced by increased ability of the granulosa cells to incorporate [3H]-leucine into cellular proteins. Neutralization of endogenous follicle stimulating hormone and luteinizing hormone by administering specific antisera had no effect on the ability of diethylstilbesterol to induce follicle stimulating hormone receptors, whereas blockade of endogenous prolactin secretion by ergobromocryptin administration significantly inhibited (∼ 30 %) the response to diethylstilbesterol; this inhibition could be completely relieved by ovine prolactin treatment. However, ovine prolactin at the dose tried did not by itself enhance follicle stimulating hormone receptor level. Administration of ergobromocryptin to adult cycling rats at noon of proestrus brought about as measured on diestrusII, (a) a reduction of both follicle stimulating hormone (∼ 30 %) and luteinizing hormone (∼ 45 %) receptor concentration in granulosa cells, (b) a drastic reduction in the ovarian tissue estradiol with no change in tissue progesterone and (c) reduction in the ability of isolated granulosa cells to convert testosterone to estradiol in response to follicle stimulating hormone. Ergobromocryptin treatment affected only prolactin and not follicle stimulating hormone or luteinizing hormone surges on the proestrus evening. Treatment of rats with ergobromocryptin at proestrus noon followed by an injection of ovine prolactin (1 mg) at 1700 h of the same day completely reversed the ergobromocryptin induced reduction in ovarian tissue estradiol as well as the aromatase activity of the granulosa cells on diestrus II, thus suggesting a role for proestrus prolactin surge in the follicular maturation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antisera (a/s) raised to individual α- and β-subunits of human chorionic gonadotropin (hCG) have been characterized for specificity using immunoaffinity procedures and used to study the disposition of the two subunits when intact hCG is complexed with luteinizing hormone (LH) receptor of the Leydig cells. Three kinds of experiments were done. (a) The ability of the preformed hormone-antibody (H-Ab) complex to bind to receptor and stimulate a response; (b) the ability of the a/s to dissociate hCG from its complex with the receptor and thereby terminate response; and (c) the ability of the premixed antibody and receptor to compete for binding of labeled hCG. Although the subunit specific a/s used here were equipotent in binding hCG (capacity to bind and Ka being very similar), their behavior once the receptor preparation or Leydig cell is introduced into the system was drastically different. The β-subunit antibody relative to the α-subunit antibody, appeared to be poorly effective in preventing hCG from either binding to the receptor or inhibiting the continuation of response. The results suggest that hCG upon interaction with the receptor loses the determinants specific to the β-region more rapidly compared to those specific to the α-region suggesting thereby that the initial interaction of hCG with the receptor should be occurring through sites in the β-subunit. Although the α-subunit portion of the hCG molecule is available for binding to the antibody for a relatively longer time, the biological response of the cell seems very sensitive to such binding with the antibody as it invariably results in loss of response. In the Leydig cell system, the ability of the a/s to bind hCG that is already complexed to the receptor appears to be dependent upon the time of addition of the antibody to the incubation medium. The antisera were totally ineffective in inhibiting steroidogenic response to hCG if added 60 min after addition of hCG. This would suggest that the hormone-receptor complex once formed perhaps continues to change its orientation with the result that with time relatively less and less of antigenic determinants become available for antibody binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative induction of FSH and LH receptors in the granulosa cells of immature rat ovary by pregnant mare serum gonadotropin (PMSG) has been studied. A single injection of PMSG (15 IU) brought about a 3- and 12-fold increase in FSH and LH receptor concentration,respectively, in the granulosa cells. Maximal concentration was reached by 72 h but the receptor levels showed a sharp decline during the next 24–48 h. The kinetic properties of the newly formed FSH receptors were indistinguishable from the pre-existing ones. The induced FSH receptors were functional as demonstrated by an increase in the in vitro responsiveness of the cells to exogenous FSH in terms of progesterone production. Treatment of immature rats with cyanoketone, an inhibitor of Δ5,3β-hydroxysteroid dehydrogenase, prior to PMSG injection effectively reduced the PMSG-stimulated increase in the serum estradiol, uterine weight and LH receptors but had no effect on the FSH receptor induction. The ability of PMSG to induce gonadotropin receptors can be arrested at any given time by injecting its antibody, thereby suggesting a continuous need for the hormonal inducer. Estrogen in the absence of the primary inducer was unable to maintain the induced LH and FSH receptor concentration. Inhibition of prostaglandin synthesis using indomethacin also had no effect on either the induction or degradation of gonadotropin receptors. Administration of PMSG antiserum, 48 h after PMSG injection, brought about a rapid decline in the induced receptors over the next 24 h, with a rate constant and \iota 1/2 of 0.078 h−1 and 8.9 h for FSH receptors and 0.086 h−1 and 8.0 h for the LH receptors, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of receptor-bound unlabelled physiologically active lutropin (luteinizing hormone, LH) was possible by a modified radioimmunoassay. The conventional radioimmunoassayconducted at 4°C was inadequate, whereas the modified assay performed at 37'C could measure receptor-bound lutropin. The radioimmunoassay at 37'C takes only 36h for completion compared with 5-7 days at 4°C. The sensitivity and range of dose-response curves are, however, unaltered. The validity of the technique was established by a number of criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Adjuvants enhance or modify an immune response that is made to an antigen. An antagonist of the chemokine CCR4 receptor can display adjuvant-like properties by diminishing the ability of CD4+CD25+ regulatory T cells (Tregs) to down-regulate immune responses. Methodology: Here, we have used protein modelling to create a plausible chemokine receptor model with the aim of using virtual screening to identify potential small molecule chemokine antagonists. A combination of homology modelling and molecular docking was used to create a model of the CCR4 receptor in order to investigate potential lead compounds that display antagonistic properties. Three-dimensional structure-based virtual screening of the CCR4 receptor identified 116 small molecules that were calculated to have a high affinity for the receptor; these were tested experimentally for CCR4 antagonism. Fifteen of these small molecules were shown to inhibit specifically CCR4-mediated cellmigration, including that of CCR4(+) Tregs. Significance: Our CCR4 antagonists act as adjuvants augmenting human T cell proliferation in an in vitro immune response model and compound SP50 increases T cell and antibody responses in vivo when combined with vaccine antigens of Mycobacterium tuberculosis and Plasmodium yoelii in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Particle-based agglutination tests consisting of receptors grafted to colloidal microparticles are useful for detecting small quantities of corresponding ligands of interest in fluid test samples, but detection limits of such tests are limited to a certain concentration and it is most desirable to lower the detection limits and to enhance the rate of recognition of ligands. METHODS: A mixture of receptor-coated colloidal microparticles and corresponding ligand was sandwiched between 2 indium tin oxide-coated glass plates. Electrohydrodynamic drag from an alternating-current electric field applied perpendicular to the plates increased the local concentration of the colloidal particles, improving the chances of ligand-receptor interaction and leading to the aggregation of the colloidal particles. RESULTS: With this technique the sensitivity of the ligand-receptor recognition was increased by a factor as large as 50. CONCLUSIONS: This method can improve the sensitivity of particle-based agglutination tests used in immuno-assays and many other applications such as immunoprecipitation and chemical, sniffing. (C) 2007 American Association for Clinical Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enteropathogenic Escherichia coli strains of diffused adherent (DA) and localised adherent (LA) phenotypes were tested for their ability to bind to glycolipids. DA strains did not bind to the glycolipids tested, while LA strains bound to asialo GM1, asialo GM2, globoside and lacto-N-neotetraose in decreasing order of avidity. The minimum common sequence among the four glycolipids could be delineated as GalNac β 1–4 Gal as the binding epitope with GalNac β 1–3 Gal and GlcNac β 1–3 Gal serving as relatively weaker binders. The binding was not inhibited by a variety of free oligosaccharides or by the neoglycoproteins tested. Adhesion-negative mutants of an enteropathogenic LA strain showed a markedly reduced binding to asialo GM1 indicating that the recognition of GalNac β 1–4 Gal was correlated with the ability to adhere to HeLa cells. Thus recognition and binding to glycolipids could play an important role in colonisation through adherence to intestinal surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eighteen corpora striata from normal human foetal brains ranging in gestational age from 16 to 40 weeks and five from post natal brains ranging from 23 days to 42 years were analysed for the ontogeny of dopamine receptors using [3H]spiperone as the ligand and 10 mM dopamine hydrochloride was used in blanks. Spiperone binding sites were characterized in a 40-week-old foetal brain to be dopamine receptors by the following criteria: (1) It was localized in a crude mitochondrial pellet that included synaptosomes; (2) binding was saturable at 0.8 nM concentration; (3) dopaminergic antagonists spiperone, haloperidol, pimozide, trifluperazine and chlorpromazine competed for the binding with IC50 values in the range of 0.3–14 nM while agonists—apomorphine and dopamine gave IC50 values of 2.5 and 10 μM, respectively suggesting a D2 type receptor.Epinephrine and norepinephrine inhibited the binding much less efficiently while mianserin at 10 μM and serotonin at 1 mM concentration did not inhibit the binding. Bimolecular association and dissociation rate constants for the reversible binding were 5.7 × 108 M−1 min−1 and 5.0 × 10−2 min−1, respectively. Equilibrium dissociation constant was 87 pM and the KD obtained by saturation binding was 73 pM.During the foetal age 16 to 40 weeks, the receptor concentration remained in the range of 38–60 fmol/mg protein or 570–1080 fmol/g striatum but it increased two-fold postnatally reaching a maximum at 5 years Significantly, at lower foetal ages (16–24 weeks) the [3H]spiperone binding sites exhibited a heterogeneity with a high (KD, 13–85 pM) and a low (KD, 1.2–4.6 nM) affinity component, the former accounting for 13–24% of the total binding sites. This heterogeneity persisted even when sulpiride was used as a displacer. The number of high affinity sites increased from 16 weeks to 24 weeks and after 28 weeks of gestation, all the binding sites showed only a single high affinity.GTP decreased the agonist affinity as observed by dopamine competition of [3H]spiperone binding in 20-week-old foetal striata and at all subsequent ages. GTP increased IC50 values of dopamine 2 to 4.5 fold and Hill coefficients were also increased becoming closer to one suggesting that the dopamine receptor was susceptible to regulation from foetal life onwards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DCs) as sentinels of the immune system are important for eliciting both primary and secondary immune responses to a plethora of microbial pathogens. Cooperative stimulation of a complex set of pattern-recognition receptors, including TLR2 and nucleotide-binding oligomerization domain (NOD)-like receptors on DCs, acts as a rate-limiting factor in determining the initiation and mounting of the robust immune response. It underscores the need for ``decoding'' these multiple receptor interactions. In this study, we demonstrate that TLR2 and NOD receptors cooperatively regulate functional maturation of human DCs. Intriguingly, synergistic stimulation of TLR2 and NOD receptors renders enhanced refractoriness to TGF-beta- or CTLA-4-mediated impairment of human DC maturation. Signaling perturbation data suggest that NOTCH1-PI3K signaling dynamics assume critical importance in TLR2- and NOD receptor-mediated surmounting of CTLA-4- and TGF-beta -suppressed maturation of human DCs. Interestingly, the NOTCH1-PI3K signaling axis holds the capacity to regulate DC functions by virtue of PKC delta-MAPK-dependent activation of NF-kappa B. This study provides mechanistic and functional insights into TLR2-and NOD receptor-mediated regulation of DC functions and unravels NOTCH1-PI3K as a signaling cohort for TLR2 and NOD receptors. These findings serve in building a conceptual foundation for the design of improved strategies for adjuvants and immunotherapies against infectious diseases.